

#### **3D Science Unit Planner**

#### **Marietta City Schools**



| Grade & Course: Physical Science | Topic: Atomic and Molecular Motion | <b>Duration:</b> S1 5 weeks |
|----------------------------------|------------------------------------|-----------------------------|
| Teachers: Physical Science PLC   |                                    |                             |

#### **Georgia Standards and Content:**

SPS5. Obtain, evaluate, and communicate information to compare and contrast the phases of matter as they relate to atomic and molecular motion.

- **a.** Ask questions to compare and contrast models depicting the particle arrangement and motion in solids, liquids, gases, and plasmas.
- **b.** Plan and carry out investigations to identify the relationships among temperature, pressure, volume, and density of gases in closed systems. (*Clarification statement:* Using specific Gas laws to perform calculations is beyond the scope of this standard; emphasis should focus on the conceptual understanding of the behavior of gases rather than calculations.)

SPS6. Obtain, evaluate, and communicate information to explain the properties of solutions.

- a. Develop and use models to explain the properties (solute/solvent, conductivity, and concentration) of solutions.
- **b.** Plan and carry out investigations to determine how temperature, surface area, and agitation affect the rate solutes dissolve in a specific solvent.
- c. Analyze and interpret data from a solubility curve to determine the effect of temperature on solubility.
- **d.** Obtain and communicate information to explain the relationship between the structure and properties (e.g., pH, and color change in the presence of an indicator) of acids and bases. (*Clarification statement:* Limited to only the structure of simple acids and bases (e.g., HCl and NaOH) that demonstrates the presence of an H+ or OH-.)
- **e.** Plan and carry out investigations to detect patterns in order to classify common household substances as acidic, basic, or neutral.

Topics to Cover: Phases of Matter, Behavior of Gases, Properties of Solutions and Acids/Bases Unit 3 Study Guide

#### **Lesson Content:**

- 1. Phases of matter: Solid, Liquids, Gases, & Plasmas Melting, Boiling, Evaporation, Sublimation, Condensation
- 2. Behaviors of Gases (density/compressible/pressure/volume/temperature/atmospheres)
- 3. Properties of Solutions (solute/solvent, concentration/unsaturated/saturated/conductivity/solubility curves/dissolving rate-temperature/surface area/agitation)
- 4. Acids and Bases pH Scale, simple structure

#### Narrative / Background Information

#### Prior Student Knowledge: (REFLECTION - PRIOR TO TEACHING THE UNIT)

Units 1 & 2 Atomic Structure and Nuclear Reactions and Periodic Table, Chemical Bonding and Chemical Reactions provided the foundation for completion of this unit. The pandemic impacted the exposure of rising 9th graders to the science classroom. Many rising 9th graders have not been exposed to the 8<sup>th</sup> Science GSE that provides the foundation for the high school Physical Science standards. Link to GSE 8th Grade Science

Unit Phenomena (LEARNING PROCESS): How can you explain the implosion of the tanker using gas laws?

**Inquiry Statement:** Scientific and technological modeling allow for identification of patterns which impact relationships.

Global Context/Exploration: Scientific and Technical Innovation/Systems & Models

Science & Engineering Practices:
Asking Questions
Modeling
Planning & Carrying out
Investigations, Analyzing &
Interpreting Data

Disciplinary Core Ideas:
(KNOWLEDGE & SKILLS)
PS1: Matter and Its Interactions
PS1.A: Structure and Properties of Matter
Matter of any type can be subdivided into
particles that are too small to see, but

Crosscutting Concepts: (KNOWLEDGE & SKILLS) Change & Systems Interactions & Energy

### Obtaining & Communicating Information

even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. (5-PS1-1) The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2)

Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3)

#### **PS1.B: Chemical Reactions**

When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4)
No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) (5-PS1-2)

#### **Key and Related Concepts:**

**Key:** Relationships

Related: Patterns & Models

## Approaches to Learning (ATLs): Communication

I. Communication skills: Exchanging thoughts, messages and information effectively through interaction

- Organize and depict information logically
- Make inferences and draw conclusions

#### Research

VI. Information literacy skills: Finding, interpreting, judging and creating information

- Collect, record, and verify data
- Practice analyzing and attributing causes for failure

# ATL's need to be taught explicitly using a noncontent example then move into using them directly with content.

- Use thinking maps to show students how to organize information thinking-maps-overview-71525 044.jpeg
- Provide students with an example of how to make inferences and draw conclusions
   Making Inferences & Drawing Conclusions
- Demonstrate how to collect, record and verify data from a very practical easy investigation
- Give students a data set to analyze and then take the steps to determine strengths and weaknesses of the investigation used to collect the data

#### Possible Preconceptions/Misconceptions: (REFLECTION - PRIOR TO TEACHING THE UNIT)

- If a solid or liquid is heated, the particles get bigger. This is not the case. At higher temperatures, they move about more and take up more space, but they do not get bigger.
- Students tend to overestimate the space between the particles in liquids. They regard a liquid as half-way between a solid and a gas. This is not the case. The particles in a liquid are close together, although they are free to move and change place.
- Students often confuse 'melting' and 'dissolving'. Some children think that when a solid melts, the particles 'pop' or simply disappear.
- Students find it difficult to understand that most gas is empty space.
- Many of these students have not been exposed to the 8<sup>th</sup> Science GSE that provides the foundation for the high school Physical Science standards.

#### The most common misconceptions that students have with acids and bases are:

- Acids can burn and eat material away. Students think of acids as active agents that damage skin and other materials.
   The idea develops in young children, who learn to think of acids as "dangerous". Acids are not perceived as being particulate, but rather continuous matter with special properties.
- Neutralization means an acid breaking down. Rather than considering neutralization as a reaction between an acid and an base, students perceive this as removing acid properties. The base may stop the action of an acid, or alternatively the acid may break down.
- A base/alkali inhibits the burning properties of an acid. Students tend to be exposed to acids in formal education well before bases, so ideas about these chemicals are relatively under-developed. Although dilute bases are in fact more corrosive than dilute acids, students' perceptions are that they have no corrosive properties, instead acting to or inhibit acids "eating away" other material.
- Hydrogen ions are present in acids, but acids remain molecular in solution. That hydrogen ions are responsible for acidic behavior is relatively well-known amongst students. However, a common model for acid behavior seems to be that hydrogen ions remain in a molecule and "swap partners" or are "displaced" from this molecule by reaction with a base or metal.

## Content/Key Vocabulary: (KNOWLEDGE & SKILLS) Split the unit into Part 1: Lessons 1 & 2 and Part 2: Lessons 3 & 4

Vocabulary Unit 3

| Lesson 1: Phases of<br>Matter                                                                                                                                                                                                                                                                           | Lesson 2: Behaviors of Gases                                                                                                                                                                                                                                                                                                                   | Lesson 3: Properties of Solutions                                                                                                                                     | Lesson 4: Acids and Bases                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| intensive property extensive property phase state of matter solid liquid gas attractive force intermolecular force constant motion random motion definite volume indefinite volume melting freezing condensation sublimation evaporation (vaporization) kinetic energy temperature Kelvin absolute zero | pressure atmosphere (atm) compressible temperature endothermic exothermic relationship between pressure and volume of gases (graphing) relationship between volume and temperature of gases (graphing relationship between pressure and temperature (graphing) hypothesis variable independent variable dependent variable controlled variable | solution solute (electrolyte) solvent dissolving concentration saturated solution unsaturated solution electrical conductivity solubility solubility curve (graphing) | acid base indicator pH scale neutralization reaction strong and weak acids and bases properties of acids and bases (identify household acids and bases based on properties) |

These questions are related directly to the key concepts, related concepts, and global context and statement of inquiry. These are taking a step further from the content questions.

#### **Inquiry Questions:**

#### **Factual**

How do solids, liquids, gases, and plasmas differ in their particle arrangement and motion? What is the relationship between temperature, surface area, and agitation and the rate solutes dissolve in a specific solvent? Identify patterns in order to classify common household substances as acidic, basic, or neutral.

#### Conceptual -

Compare and contrast models depicting the particle arrangement and motion in solids, liquids, gases, and plasmas. Develop a model to explain the properties of solutions.

#### Debatable -

Although the three most common states of matter are solid, liquid, and gas, not all substances seem to fit perfectly into one of these groups. Can you decide whether shaving cream should be called a solid, liquid, gas, or something in between? Use CER (Claim Evidence Reasoning) to support your argument.

MYP A (Part 1)

state-debate shaving cream.pdf and

MYP A (Part 2) MYP A Acids and Bases Short Answer

MYP B and C (TBD) More explicit summary of assessments and how they

are used

Formative Assessments:

CFA 1 SPS5a Lesson 1 States of Matter **Summative assessment** 

CSA Lessons 1-4

Relationship between summative assessment task(s) and statement of inquiry:

CFA1 - Use of models to identify states of matter based on patterns in particle arrangement and motion

Unit Objectives: SPS5 States of Matter and Behavior of Gases and SPS6 Solutions and Acids/Bases

Learning Activities and Experiences

Inquiry & Obtain: (LEARNING PROCESS)

Evaluate: (LEARNING PROCESS)

Communicate: (LEARNING PROCESS)

| Lesson 1:<br>States/Phases<br>of Matter | Introductory Guided Reading States of Matter Textbook Resource  States of Matter Video - Liquid Sand  States of Matter and Thermal Energy Text Investigation  Matter and Thermal Energy Investigation  PhET Simulation Copy of Intro to states of matter  Google Slides/Guided Notes  Intro to States of Matter States of Matter Guided Notes  States of Matter Venn Diagram | https://drive.google.com/file/d/1r | States of Matter Concept Map Activities (Engage, Explore, Explain) Concept Map Activities  Oobleck Lab  Students will maintain notebooks with all classwork, homework, and activities |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CFA1<br>States of<br>Matter             | Schoology AMP Assessment on States of matter and changes of state                                                                                                                                                                                                                                                                                                            |                                    |                                                                                                                                                                                       |
| Lesson 2:<br>Behaviors of<br>Gases      | Gas Laws Notes gas laws google slides  Gas Laws Guided Notes gas laws guided notes  Crash Course Video: Crash Course Video Ideal Gas Law  Simulation: Gas Properties PhET Simulation  Student Handout: Gas Laws student sheet                                                                                                                                                |                                    | Behaviors of Gases Cut and Paste Notes Gases Laws - Concepts only Trends Pressure/Volume/Temperature GasLawsCutandPasteNotes.pdf  Vapor+Pressure+Curve+Lab                            |

| Lesson 3:<br>Solutions     | Solutions Google Slides  Guided Notes Solutions_guided_notes  Textbook Resource Solutions (1).pdf |                                                                            |                                                                                    |
|----------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Lesson 4:<br>Acids & Bases | The-pH-Scale (1).pdf  Acids and Bases  acid_base_guided_notes                                     | Acids and Bases pH/CER Lab<br>Household chemicals - knowns and<br>unknowns | Acids and Bases Cut and Paste Activity acids-and-bases-cut-amp-paste-activit v.jpg |
| CSA Unit 3                 | Unit 3 overall<br>Summative assessment<br>over lessons 1-4                                        |                                                                            |                                                                                    |

#### **Differentiation Strategies:**

- Student Choice
- Shared interest centers
- Immediate Feedback with opportunities to re-submit without penalty
- 3D Assessments / Tiered Assessments
- Go Further Activities

#### Resources (hyperlink to model lessons and/or resources):

Resources are created and shared within the professional learning community (PLC) of all Physical Science Teachers. We collaborate on creating quality learning experiences for all students within the classroom environment.

#### **Unit 3 Google Drive Resources:**

Discovery Education: Chemistry Science Techbook

Holt Science Spectrum Physical Science Textbook

#### **General DE Chapter Resources:**

Interactive Periodic Table

**Interactive Glossary** 

**Engage & Explore Activities** 

**Explorations** 

Virtual Labs

Skill Builders

**Video Segments** 

CK12 High School Chemistry Flexbook/Adaptive Practice

**Shared Physical Science Resources** 

https://marietta.schoology.com/group/4621413779/materials?f=231800526#/group/4621413779/materials

#### Reflection: Considering the planning, process and impact of the inquiry

| Prior to teaching the unit                                                                                                                                 | During teaching                                                                                                                                                                                                                                                                  | After teaching the unit                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Determine pacing at the PLC level - discuss where CFA/CSA assessments will be given  Determine vocabulary and topics to teach and focus on for each lesson | Gas Law simulations were beneficial (phets) for understanding and the demonstrations were useful for engagement.  Used physics classroom for gas laws with data - students were able to see the relationships between P, T, V and could earn achievement badges to stay engaged. | Turn demonstrations into stations to allow students to explore.  Chemicals need to be restocked for labs |